Semantic-aware deidentification generative adversarial networks for identity anonymization

نویسندگان

چکیده

Abstract Privacy protection in the computer vision field has attracted increasing attention. Generative adversarial network-based methods have been explored for identity anonymization, but they do not take into consideration semantic information of images, which may result unrealistic or flawed facial results. In this paper, we propose a Semantic-aware De-identification Adversarial Network (SDGAN) model anonymization. To retain expression effectively, extract image using edge-aware graph representation network to constraint position, shape and relationship generated key features. Then is injected generator together with randomly selected de-Identification. ensure generation quality realistic-looking results, adopt SPADE architecture improve ability conditional GAN. Meanwhile, design hybrid discriminator composed an analysis module, VGG-based perceptual loss function, contrastive enhance both ID A comparison state-of-the-art baselines demonstrates that our achieves significantly improved de-identification (De-ID) performance provides more reliable faces. Our code data are available on https://github.com/kimhyeongbok/SDGAN

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attention-Aware Generative Adversarial Networks (ATA-GANs)

In this work, we present a novel approach for training Generative Adversarial Networks (GANs). Using the attention maps produced by a TeacherNetwork we are able to improve the quality of the generated images as well as perform weakly object localization on the generated images. To this end, we generate images of HEp-2 cells captured with Indirect Imunofluoresence (IIF) and study the ability of ...

متن کامل

GAGAN: Geometry-Aware Generative Adversarial Networks

Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, aside from their texture, the visual appearance of objects is significantly influenced by their shape geometry; information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generati...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Context-Aware Generative Adversarial Privacy

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve...

متن کامل

Face Deidentification with Generative Deep Neural Networks

Face deidentification is an active topic amongst privacy and security researchers. Early deidentification methods relying on image blurring or pixelization were replaced in recent years with techniques based on formal anonymity models that provide privacy guaranties and at the same time aim at retaining certain characteristics of the data even after deidentification. The latter aspect is partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multimedia Tools and Applications

سال: 2022

ISSN: ['1380-7501', '1573-7721']

DOI: https://doi.org/10.1007/s11042-022-13917-6